Combination of CNTs with Classical Drugs for Treatment in Human Colorectal Adenocarcinoma (HT-29) Cell Line

Author:

Abreu Sara123,Vale Nuno345ORCID,Soares Olívia Salomé G. P.12ORCID

Affiliation:

1. Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

2. ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

3. OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal

4. CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal

5. Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal

Abstract

Due to the increase in new types of cancer cells and resistance to drugs, conventional cancer treatments are sometimes insufficient. Therefore, an alternative is to apply nanotechnology to biomedical areas, minimizing side effects and drug resistance and improving treatment efficacy. This work aims to find a promising cancer treatment in the human colorectal adenocarcinoma cell line (HT-29) to minimize the viability of cells (IC50) by using carbon nanotubes (CNTs) combined with different drugs (5-fluorouracil (5-FU) and two repurposing drugs—tacrine (TAC) and ethionamide (ETA). Several CNT samples with different functional groups (-O, -N, -S) and textural properties were prepared and characterized by elemental and thermogravimetry analysis, size distribution, and textural and temperature programmed desorption. The samples that interacted most with the drugs and contributed to improving HT-29 cell treatment were samples doped with nitrogen and sulfur groups (CNT-BM-N and CNT-H2SO4-BM) with IC50 1.98 and 2.50 µmol∙dm−3 from 5-FU and 15.32 and 15.81 µmol∙dm−3 from TAC. On the other hand, ETA had no activity, even combined with the CNTs. These results allow us to conclude that the activity was improved for both 5-FU and TAC when combined with CNTs.

Funder

ALiCE

LSRE−LCM

FCT/MCTES

Fundo Europeu de Desenvolvimento Regional

Portuguese funds

FCT and FEDER

FCT

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3