SnS2 as a Saturable Absorber for Mid-Infrared Q-Switched Er:SrF2 Laser

Author:

Li Chun1,Yang Qi1,Zu Yuqian1,Din Syed Zaheer Ud1,Yue Yu2,Zhai Ruizhan1,Jia Zhongqing1

Affiliation:

1. International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. School of Science, Shandong Jianzhu University, Jinan 250101, China

Abstract

Two-dimensional (2D) materials own unique band structures and excellent optoelectronic properties and have attracted wide attention in photonics. Tin disulfide (SnS2), a member of group IV-VI transition metal dichalcogenides (TMDs), possesses good environmental optimization, oxidation resistance, and thermal stability, making it more competitive in application. By using the intensity-dependent transmission experiment, the saturable absorption properties of the SnS2 nanosheet nearly at 3 μm waveband were characterized by a high modulation depth of 32.26%. Therefore, a few-layer SnS2 was used as a saturable absorber (SA) for a bulk Er:SrF2 laser to research its optical properties. When the average output power was 140 mW, the passively Q-switched laser achieved the shortest pulse width at 480 ns, the optimal single pulse energy at 3.78 µJ, and the highest peak power at 7.88 W. The results of the passively Q-switched laser revealed that few-layer SnS2 had an admirable non-linear optical response at near 3 μm mid-infrared solid-state laser.

Funder

Natural Science Foundation of Shandong Province of China

National Natural Science Foundation of China

Qilu University of Technology (Shandong Academy of Sciences), Education and Industry Integration and Innovation Pilot

Key R&D Program of Shandong Province

Major innovation projects for integrating science, education & industry of Qilu University of Technology

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3