Communication Efficient Algorithms for Bounding and Approximating the Empirical Entropy in Distributed Systems

Author:

Shahar Amit,Alfassi Yuval,Keren Daniel

Abstract

The empirical entropy is a key statistical measure of data frequency vectors, enabling one to estimate how diverse the data are. From the computational point of view, it is important to quickly compute, approximate, or bound the entropy. In a distributed system, the representative (“global”) frequency vector is the average of the “local” frequency vectors, each residing in a distinct node. Typically, the trivial solution of aggregating the local vectors and computing their average incurs a huge communication overhead. Hence, the challenge is to approximate, or bound, the entropy of the global vector, while reducing communication overhead. In this paper, we develop algorithms which achieve this goal.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference16 articles.

1. The continuous distributed monitoring model;SIGMOD Rec.,2013

2. Distributed Spanner Approximation;SIAM J. Comput.,2021

3. Li, M., Andersen, D.G., Smola, A.J., and Yu, K. (2014, January 8–13). Communication Efficient Distributed Machine Learning with the Parameter Server. Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada.

4. Vajapeyam, S. (2014). Understanding Shannon’s Entropy metric for Information. arXiv.

5. DDoS Attack Detection Algorithms Based on Entropy Computing;Proceedings of the Information and Communications Security, 9th International Conference, ICICS 2007,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis and Identification of Distributed Denial of Service Attacks Using Intra-Domain Messaging Schemes;2024 IEEE 6th Symposium on Computers & Informatics (ISCI);2024-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3