Abstract
Several studies reported that metformin, the most widely used drug for type 2 diabetes, might affect cancer aggressiveness. The biguanide seems to directly impair cancer energy asset, with the consequent phosphorylation of AMP-activated protein kinase (AMPK) inhibiting cell proliferation and tumor growth. This action is most often attributed to a well-documented blockage of oxidative phosphorylation (OXPHOS) caused by a direct interference of metformin on Complex I function. Nevertheless, several other pleiotropic actions seem to contribute to the anticancer potential of this biguanide. In particular, in vitro and in vivo experimental studies recently documented that metformin selectively inhibits the uptake of 2-[18F]-Fluoro-2-Deoxy-D-Glucose (FDG), via an impaired catalytic function of the enzyme hexose-6P-dehydrogenase (H6PD). H6PD triggers a still largely uncharacterized pentose-phosphate pathway (PPP) within the endoplasmic reticulum (ER) that has been found to play a pivotal role in feeding the NADPH reductive power for both cellular proliferation and antioxidant responses. Regardless of its exploitability in the clinical setting, this metformin action might configure the ER metabolism as a potential target for innovative therapeutic strategies in patients with solid cancers and potentially modifies the current interpretative model of FDG uptake, attributing PET/CT capability to predict cancer aggressiveness to the activation of H6PD catalytic function.
Subject
Molecular Biology,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献