Preparation of Affinity Purified Antibodies against ε-Glutaryl-Lysine Residues in Proteins for Investigation of Glutarylated Proteins in Animal Tissues

Author:

Artiukhov Artem V.,Kolesanova Ekaterina F.,Boyko Aleksandra I.ORCID,Chashnikova Anastasiya A.,Gnedoy Sergei N.,Kaehne Thilo,Ivanova Daria A.,Kolesnichenko Alyona V.,Aleshin Vasily A.ORCID,Bunik Victoria I.ORCID

Abstract

The glutarylation of lysine residues in proteins attracts attention as a possible mechanism of metabolic regulation, perturbed in pathologies. The visualization of protein glutarylation by antibodies specific to ε-glutaryl-lysine residues may be particularly useful to reveal pathogenic mutations in the relevant enzymes. We purified such antibodies from the rabbit antiserum, obtained after sequential immunization with two artificially glutarylated proteins, using affinity chromatography on ε-glutaryl-lysine-containing sorbents. Employing these anti(ε-glutaryl-lysine)-antibodies for the immunoblotting analysis of rat tissues and mitochondria has demonstrated the sample-specific patterns of protein glutarylation. The study of the protein glutarylation in rat tissue homogenates revealed a time-dependent fragmentation of glutarylated proteins in these preparations. The process may complicate the investigation of potential changes in the acylation level of specific protein bands when studying time-dependent effects of the acylation regulators. In the rat brain, the protein glutarylation, succinylation and acetylation patterns obtained upon the immunoblotting of the same sample with the corresponding antibodies are shown to differ. Specific combinations of molecular masses of major protein bands in the different acylation patterns confirm the selectivity of the anti(ε-glutaryl-lysine)-antibodies obtained in this work. Hence, our affinity-purified anti(ε-glutaryllysine)-antibodies provide an effective tool to characterize protein glutarylation, revealing its specific pattern, compared to acetylation and succinylation, in complex protein mixtures.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3