Research on Adhesive Coefficient of Rubber Wheel Crawler on Wet Tilted Photovoltaic Panel

Author:

Nguyen Minh TriORCID,Truong Cong ToaiORCID,Nguyen Vu Thinh,Duong Van TuORCID,Nguyen Huy Hung,Nguyen Tan TienORCID

Abstract

The demand for renewable energy sources is growing fast because of the negative impact of the utilization of fossil energy, nuclear energy, and hydroelectricity. One of the renewable energy sources, known as solar energy, which uses the photovoltaic panel (PV) to generate electricity from the sun, is a promising alternative that has great potential to deal with the power crisis. However, the power productivity and efficiency conversion are affected significantly by dust accumulation on PVs. Many researchers investigated PV panel dust cleaning methods to improve performance, yield, and profitability. Various dust cleaning and mitigation methods such as rainfall, labor-based, and mechanized cleaning are explored, and we demonstrated that dust removal could be automated with cleaning robots effectively. Due to the specified geographical site of PV panel installation, cleaning robots might work on the misalignment and uneven PV arrays, presenting huge challenges for an autonomous cleaning robot. Thus, a rubber wheel crawler robot with semi-autonomous handling provides a flexible motion that is a well-suited solution to clean rooftop PV arrays. Nevertheless, the rubber wheel crawler robot might suffer slippage on the wet glass of tilted PV arrays. This paper studies the anti-slip effect of the rubber wheel crawler equipped with a cleaning robot under the wet surface of tilted PV panels. First, a theoretical model consisting of several parameters is established to validate the slippage of the rubber wheel crawler on the wet tilted PV. Then, some parameters of the theoretical model are approximated through experimental tests. Finally, simulation results of the theoretical model are conducted to evaluate the accuracy of the proposed theoretical model in comparison to the experimental results under the same working conditions. The merits provide the efficient design of rubber wheel crawlers, enabling the anti-slip ability of robots.

Funder

Vietnam National University Ho Chi Minh City

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3