Multirotor Unmanned Aerial Vehicle Configuration Optimization Approach for Development of Actuator Fault-Tolerant Structure

Author:

Debele YisakORCID,Shi Ha-Young,Wondosen AssefinewORCID,Kim Jin-Hee,Kang Beom-Soo

Abstract

Presently, multirotor unmanned aerial vehicles (UAV) are utilized in numerous applications. Their design governs the system’s controllability and operation performance by influencing the achievable forces and moments produced. However, unexpected causalities, such as actuator failure, adversely affect their controllability, which raises safety concerns about their service. On the other hand, their design flexibility allows further design optimization for various performance requirements, including actuator failure tolerance. Thus, this study proposed an optimization framework that can be employed to design a novel actuator fault-tolerant multirotor UAV configuration. The approach used an attainable moment set (AMS) to evaluate the achievable moment from a multirotor configuration; similarly, standard deviation geometries (SDG) were employed to define performance requirements. Therefore, given a UAV configuration, actuator fault situation, and SDG derived from the designed mission requirement, the suggested optimization framework maximizes the scaling factor of SDG and fits it into the AMS by adjusting the design parameters up to a sufficient margin. The framework is implemented to optimize selected parameters of the Hexacopter-type of parcel delivery multirotor UAV developed by the PNU drone, and a simulation was conducted. The result showed that the optimized configuration of the UAV achieved actuator fault tolerance and operation-performing capability in the presence of a failed actuator.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. A Survey on Fault Diagnosis and Fault-Tolerant Control Methods for Unmanned Aerial Vehicles

2. Actuator Fault-Tolerant Control Architecture for Multirotor Vehicles in Presence of Disturbances

3. Fault Tolerance Analysis for a Class of Reconfigurable Aerial Hexarotor Vehicles

4. Fault-Tolerant Multirotor Systems;Schneider;Master’s Thesis,2011

5. Design of a Multi Rotor MAV with regard to Efficiency, Dynamics and Redundancy;Michael;Proceedings of the AIAA 2012-4779, AIAA Guidance, Navigation, and Control Conference,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3