CO2 Adsorption Reactions of Synthetic Calcium Aluminum Ferrite (CAF)

Author:

Lee Woong-Geol,Song Myong-ShinORCID

Abstract

In this study, we investigated a mechanism of carbonation reaction by CO2 capture through synthesis of ternary (CaO-Al2O3-Fe2O3) compounds. As for the composition of the sintered calcium aluminum ferrite (SCAF), the proportions of CF-based product and CA-based product were high, at 87.3% and 64.6%, at sintering temperatures of 1000 °C and 1100 °C, respectively. In addition, in the process of both dry and wet carbonation, the carbonation reaction occurred in the synthetic SCAF regardless of the sintering temperature conditions. In particular, in the carbonation with the wet method, CAH and CAFH, which are hydrates, were produced in up to 1 h of the reaction time with CO2, but from 3 h of reaction time, carbo compounds such as calcium carbo aluminate and calcium carbo alumino-ferrite compounds were produced. That is, with increasing reaction time, the carbo reaction becomes more active in the process. Therefore, SCAF synthesized in this study easily produced carbo compounds through carbonation reactions and formed carbonates by reaction with CO2. Thus, it is expected that the compounds can be effectively utilized as an excellent material for CO2 capture capable of CO2 absorption and fixation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference13 articles.

1. A Study for Estimating Environmental Load Throughout Building Life Cycle;Song;J. Archit. Inst. Korea,1997

2. Development and Application of Cement-Zero Concrete,2008

3. Trends in the global cement industry and opportunities for long term sustainable CCU potential for power to X;Javier;J. Clean. Prod.,2019

4. Current Technical Tendency of Concrete Using Fly Ash;Hwang;Mag. Korea Concr. Inst.,2002

5. Thermodynamics of Portland Cement Clinkering;Theodore;Proceedings of the 14th International Congress on the Chemistry of Cement,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3