A Genetic Programming Approach for Economic Forecasting with Survey Expectations

Author:

Claveria OscarORCID,Monte EnricORCID,Torra SalvadorORCID

Abstract

We apply a soft computing method to generate country-specific economic sentiment indicators that provide estimates of year-on-year GDP growth rates for 19 European economies. First, genetic programming is used to evolve business and consumer economic expectations to derive sentiment indicators for each country. To assess the performance of the proposed indicators, we first design a nowcasting experiment in which we recursively generate estimates of GDP at the end of each quarter, using the latest business and consumer survey data available. Second, we design a forecasting exercise in which we iteratively re-compute the sentiment indicators in each out-of-sample period. When evaluating the accuracy of the predictions obtained for different forecast horizons, we find that the evolved sentiment indicators outperform the time-series models used as a benchmark. These results show the potential of the proposed approach for prediction purposes.

Funder

Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference67 articles.

1. A crisis like no other, an uncertain recovery,2020

2. Using rule-based updating procedures to improve the performance of composite indicators

3. Autometrics*

4. Evaluating Automatic Model Selection

5. Common Trends in Producers’ Expectations, the Nonlinear Linkage with Uruguayan GDP and Its Implications in Economic Growth Forecasting http://www.iecon.ccee.edu.uy/dt-28-19-common-trends-in-producers-expectations-the-nonlinear-linkage-with-uruguayan-gdp-and-its-implications-in-economic-growth-forecasting/publicacion/707/es/

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting Selected Commodities’ Prices with the Bayesian Symbolic Regression;International Journal of Financial Studies;2024-03-29

2. Confidence Interval Approach to Weather Forecasting with Horizon Based Genetic Programming;Düzce Üniversitesi Bilim ve Teknoloji Dergisi;2024-01-26

3. Artificial Intelligence in Physical Sciences: Symbolic Regression Trends and Perspectives;Archives of Computational Methods in Engineering;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3