Real-Time Data-Driven Approach for Prediction and Correction of Electrode Array Trajectory in Cochlear Implantation

Author:

Hafeez Nauman,Du XinliORCID,Boulgouris Nikolaos,Begg Philip,Irving Richard,Coulson Chris,Tourrel Guillaume

Abstract

Cochlear implants provide hearing perception to people with severe to profound hearing loss. The electrode array (EA) inserted during the surgery directly stimulates the hearing nerve, bypassing the acoustic hearing system. The complications during the EA insertion in the inner ear may cause trauma leading to infection, residual hearing loss, and poor speech perception. This work aims to reduce the trauma induced during electrode array insertion process by carefully designing a sensing method, an actuation system, and data-driven control strategy to guide electrode array in scala tympani. Due to limited intra-operative feedback during the insertion process, complex bipolar electrical impedance is used as a sensing element to guide EA in real time. An automated actuation system with three degrees of freedom was used along with a complex impedance meter to record impedance of consecutive electrodes. Prediction of EA direction (medial, middle, and lateral) was carried out by an ensemble of random forest, shallow neural network, and k-nearest neighbour in an offline setting with an accuracy of 86.86%. The trained ensemble was then utilized in vitro for prediction and correction of EA direction in real time in the straight path with an accuracy of 80%. Such a real-time system also has application in other electrode implants and needle and catheter insertion guidance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3