hLSTM-Aging: A Hybrid LSTM Model for Software Aging Forecast

Author:

Battisti FelipeORCID,Silva ArnaldoORCID,Pereira LuisORCID,Carvalho TiagoORCID,Araujo JeanORCID,Choi Eunmi,Nguyen Tuan AnhORCID,Min Dugki

Abstract

Long-running software, such as cloud computing services, is now widely used in modern applications. As a result, the demand for high availability and performance has grown. However, these applications are more vulnerable to software aging issues and are more likely to fail due to the accumulation of mistakes in the system. One popular strategy for dealing with such aging-related problems is to plan prediction-based software rejuvenation activities based on previously obtained data from long-running software. Prediction algorithms enable the activation of a mitigation mechanism before the problem occurs. The long short-term memory (LSTM) neural network, the present state of the art in temporal series prediction, has demonstrated promising results when applied to software aging concerns. This study aims to anticipate software aging failures using a hybrid prediction model integrating long short-term memory models and statistical approaches. We emphasize the capabilities of each strategy in various long-running software scenarios and provide an untried hybrid model (hLSTM-aging) based on the union of Conv-LSTM networks and probabilistic methodologies, attempting to combine the strengths of both approaches for software aging forecasts. The hLSTM-aging prediction results revealed how hybrid models are a compelling solution for software-aging prediction. Experiments showed that hLSTM-aging increased MSE criteria by 8.54% to 50% and MAE criteria by 3.53% to 14.29% when compared to Conv-LSTM, boosting the model’s initial performance.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3