A GA and SVM Classification Model for Pine Wilt Disease Detection Using UAV-Based Hyperspectral Imagery

Author:

Zhang SulanORCID,Huang HongORCID,Huang Yunbiao,Cheng DongdongORCID,Huang Jinlong

Abstract

Pine wilt disease (PWD), caused by the pine wood nematode (Bursaphelenchus xylophilus), is a global destructive threat to forests and has led to serious economic losses all over the world. Therefore, it is necessary to establish a feasible and effective method to accurately monitor and estimate PWD infection. In this study, we used hyperspectral imagery (HI) collected by an unmanned airship with a hyperspectral imaging spectrometer to detect PWD in healthy, early, middle and serious infection stages. To avoid massive calculations on the full spectral dimensions of the HI, 16 spectral features were extracted from the HI, and a genetic algorithm (GA) was implemented to identify the optimal ones with the least fitness. Simultaneously, a support vector machine (SVM) classifier was established to predict the PWD infection stage for an individual pine tree. The following results were obtained: (1) the spectral characteristics for pine trees in different PWD infection stages were distinctive in the green region (510–580 nm), red edge (680–760 nm) and near-infrared (780–1000 nm) spectra; (2) the six optimal spectral features (Dgreen, SDgreen, Dred, DRE, DNIR, SDNIR) selected with the GA effectively distinguished the PWD infection stages of pine trees with a lower calculation cost; (3) compared with the traditional classifiers, such as k-nearest neighbor (KNN), random forest (RF) and single SVM, the proposed GA and SVM classifier achieved the highest overall accuracy (95.24%) and Kappa coefficient (0.9234). The approach could also be employed for monitoring and detecting other forest pests.

Funder

National Natural Science Foundation of China

Project of Chongqing Municipal Education Commission, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3