Numerical Application of a Proposed Material Constant Estimation Method Based on Ideal Mixing Theory

Author:

Kim Hyeong-JooORCID,Ham Tae-Gew,Dinoy Peter Rey,Reyes James Vincent,Kim Hyeong-Soo

Abstract

In large projects such as dams, embankments, and seawalls, it is sometimes important to determine the compressive properties of a mixture containing soil and gravel with particle sizes exceeding 75 mm. The Saemangeum Renewable Energy Vision Proclamation Ceremony, held in October 2018 in Korea, confirmed and promulgated the plan to build a total of 4.0 GW of renewable energy power generation complex in the Saemangeum area. The project will be carried out on an area of 31.95 km2, and a 1.0 GW offshore wind power development plan is in progress. Since most of the Saemangeum area has a soft ground layer that has been reclaimed, a key research institute is absolutely necessary to lead in the stabilization of the supporting structures for power generation facilities and to achieve the renewable energy 3020 policy in extreme environments. Hence, it is meaningful to investigate the effect of gravel content (P) on the ground strength characteristics. However, such investigation cannot be routinely performed due to the limited size of the equipment available. Several equations have been proposed in the literature to modify the compaction properties of gravel-mixed soils containing coarse aggregates. Among these is the proposed equation by Walker and Holtz, which has widely been used. However, the use of this equation in the case of high gravel content is not appropriate because the physical meaning of this equation is not clear and does not apply to materials with gravel content exceeding 40%. Therefore, a better quantitative evaluation method in determining material characteristics according to gravel content must be established through laboratory tests on samples of acceptable particle size for the experimental equipment. To obtain the compressive properties of decomposed granite soil (D-G-S), in this study, the results from large-scale one-dimensional compression tests on samples compacted at various gravel concentrations, constant compaction energy, and constant water content were analyzed. To quantitatively evaluate the properties of D-G-S according to the gravel content, a modified formula based on the two-phase mixing theory was utilized. It was shown that the degree of mixing between the gravel and sand for the conditions of D-G-S used in the experiments was high, at 0.85. To estimate the compression curves of D-G-S at various gravel content, the compression curves of purely sand (P = 0%) and purely gravel (P = 100%) materials, and the value of Rm = 0.85 were utilized, and it was shown that the compression index and swelling index curves estimated using the method presented in this study were in good agreement with the experimental results. To confirm the engineering applicability of the presented method, finite element analysis was performed, and as a result, it was revealed that it can be sufficiently applied in the simulation of embankment settlement. In order to obtain more reliable results in the future, verification using various samples is required.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3