SLedge: Scheduling and Load Balancing for a Stream Processing EDGE Architecture

Author:

Hidalgo NicolasORCID,Rosas Erika,Saavedra Teodoro,Morales Jefferson

Abstract

Natural disasters have a significant impact on human welfare. In recent years, disasters are more violent and frequent due to climate change, so their impact may be higher if no preemptive measures are taken. In this context, real-time data processing and analysis have shown great potential to support decision-making, rescue, and recovery after a disaster. However, disaster scenarios are challenging due to their highly dynamic nature. In particular, we focus on data traffic and available processing resources. In this work, we propose SLedge—an edge-based processing model that enables mobile devices to support stream processing systems’ tasks under post-disaster scenarios. SLedge relies on a two-level control loop that automatically schedules SPS’s tasks over mobile devices to increase the system’s resilience, reduce latency, and provide accurate outputs. Our results show that SLedge can outperform a cloud-based infrastructure in terms of latency while keeping a low overhead. SLedge processes data up to five times faster than a cloud-based architecture while improving load balancing among processing resources, dealing better with traffic spikes, and reducing data loss and battery drain.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. The Sendai Framework for Disaster Risk Reduction: Renewing the Global Commitment to People’s Resilience, Health, and Well-being

2. Storm Conceptshttps://storm.incubator.apache.org/documentation/Concepts.html

3. The Mobile Economy 2020, Tech Reporthttps://www.gsma.com/mobileeconomy/

4. Energy-aware task allocation for small devices in wireless networks

5. Mobile storm: Distributed real-time stream processing for mobile clouds;Ning;Proceedings of the 2015 IEEE 4th International Conference on Cloud Networking (CloudNet),2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3