A Novel Online Correlation Noise Model Based on Band Coefficients Mean to Achieve Low Computational and Coding-Efficient Distributed Video Codec

Author:

Khursheed ShahzadORCID,Badruddin NasreenORCID,Jeoti Varun,Hashmani Manzoor AhmedORCID

Abstract

Distributed video coding (DVC) is a novel coding paradigm that offers low computational encoding relative to conventional video-coding framework at the expense of high-decoding computational complexity. The challenging part of this video-coding framework is achieving better rate-distortion (RD) compared with conventional codec performance. A suitable and accurate correlation noise model (CNM) is crucial in improving the RD performance by achieving high coding efficiency and making decoding less computationally demanding. Since the correlation is nonstationary and time-variant and can vary from frame to frame, offline CNM estimation is not feasible for practical applications and real-time decoding. An online CNM may be the solution to this problem. In DVC, neither Wyner–Ziv frame (WZF) nor estimated side information (SI) of the corresponding WZF is available at the encoder. Therefore, online estimation of the CNM and its parameters can be quite challenging. The contribution of this research work is a novel online CNM which is computed by taking the mean of each transformed coefficient band and deployed for two different codecs. Our proposed codec, DIVCOM, which stands for “Distributed Video Coding with Online Band Mean Correlation Noise Model”, outperforms the existing baseline codec, DISCOVER (DIS), in both coding efficiency and peak signal-to-noise ratio (PSNR). The DIVCOM codec achieves coding efficiency of up to 8.05 kbps, and PSNR ranges from 0.0245 dB to 0.18 dB. An extended version of DIVCOM incorporating phase-based side information called PDIVCOM achieves coding efficiency up to 10.9 kbps, and PSNR ranges from 0.019 to 0.17 dB compared to DIS.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. A Real-Time Implementation of Moving Object Action Recognition System Based on Motion Analysis;Sehairi;Indones. J. Electr. Eng. Inform.,2017

2. Super-Spatial Structure Prediction Compression of Medical

3. Maximum Likelihood Laplacian Correlation Channel Estimation in Layered Wyner-Ziv Coding

4. Tradeoff between compression ratio and decoding delay of distributed source coding for uplink transmissions in machine-type communication

5. A Fast DVC to HEVC Transcoding for Mobile Video Communication;Yang;Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC),2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3