Theoretical Studies of Nonlinear Relaxation Electrophysical Phenomena in Dielectrics with Ionic–Molecular Chemical Bonds in a Wide Range of Fields and Temperatures

Author:

Kalytka ValeriyORCID,Bulatbayev Felix,Neshina YelenaORCID,Bilichenko Yekaterina,Bilichenko Arkadiy,Bashirov Aleksandr,Sidorina YelenaORCID,Naboko YelenaORCID,Malikov Nurbol,Senina Yelena

Abstract

This paper is devoted to the development of generalized (for a wide range of fields (100 kV/m–1000 MV/m) and temperatures (0–1500 K) in the radio frequency range (1 kHz–500 MHz)) methods for the theoretical investigation of the physical mechanism of nonlinear kinetic phenomena during the establishment of the relaxation polarization, due to the diffusion motion of the main charge carriers in dielectrics with ionic–molecular chemical bonds (hydrogen-bonded crystals (HBC), including layered silicates, crystalline hydrates and corundum–zirconium ceramics (CZC), etc.) in an electric field. The influence of the nonlinearities equations of the initial phenomenological model of dielectric relaxation (in HBC-proton relaxation) on the mechanism for the formation of volume–charge polarization in solid dielectrics is analyzed. The solutions for the nonlinear kinetic Fokker–Planck equation, together with the Poisson equation, for the model of blocked electrodes are built in an infinite approximation (including all orders k of smallness without dimensional parameters) of perturbation theory for an arbitrary order r of the frequency harmonic of an alternating external polarizing field. It has been established that the polarization nonlinearities in ion-molecular dielectrics, already detected at the fundamental frequency, are interpreted in the mathematical model (for the first time in this work) as interactions of the relaxation modes of the volume charge density calculated on different orders of spatial Fourier harmonics. At the fundamental frequency of the field, an analytical generalized expression is written for complex dielectric permittivity (CDP), which is expressed analytically in terms of special relaxation parameters, which are quite complex real functions in the fields of frequency and temperature. The theoretical CDP and the dielectric loss tangent spectra studied depend on the nature of the relaxation processes in the selected temperature range (Maxwell and diffusion relaxation; thermally activated and tunneling relaxation), which is relevant from the point of view of choosing exact calculation formulas when analyzing the optimal operating modes of functional elements (based on dielectrics and their composites) for circuits of instrumentation, radio engineering and power equipment in real industrial production.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3