Performance Analysis for COVID-19 Diagnosis Using Custom and State-of-the-Art Deep Learning Models

Author:

Nagi Ali Tariq,Awan Mazhar JavedORCID,Mohammed Mazin AbedORCID,Mahmoud AmenaORCID,Majumdar Arnab,Thinnukool OrawitORCID

Abstract

The modern scientific world continuously endeavors to battle and devise solutions for newly arising pandemics. One such pandemic which has turned the world’s accustomed routine upside down is COVID-19: it has devastated the world economy and destroyed around 45 million lives, globally. Governments and scientists have been on the front line, striving towards the diagnosis and engineering of a vaccination for the said virus. COVID-19 can be diagnosed using artificial intelligence more accurately than traditional methods using chest X-rays. This research involves an evaluation of the performance of deep learning models for COVID-19 diagnosis using chest X-ray images from a dataset containing the largest number of COVID-19 images ever used in the literature, according to the best of the authors’ knowledge. The size of the utilized dataset is about 4.25 times the maximum COVID-19 chest X-ray image dataset used in the explored literature. Further, a CNN model was developed, named the Custom-Model in this study, for evaluation against, and comparison to, the state-of-the-art deep learning models. The intention was not to develop a new high-performing deep learning model, but rather to evaluate the performance of deep learning models on a larger COVID-19 chest X-ray image dataset. Moreover, Xception- and MobilNetV2- based models were also used for evaluation purposes. The criteria for evaluation were based on accuracy, precision, recall, F1 score, ROC curves, AUC, confusion matrix, and macro and weighted averages. Among the deployed models, Xception was the top performer in terms of precision and accuracy, while the MobileNetV2-based model could detect slightly more COVID-19 cases than Xception, and showed slightly fewer false negatives, while giving far more false positives than the other models. Also, the custom CNN model exceeds the MobileNetV2 model in terms of precision. The best accuracy, precision, recall, and F1 score out of these three models were 94.2%, 99%, 95%, and 97%, respectively, as shown by the Xception model. Finally, it was found that the overall accuracy in the current evaluation was curtailed by approximately 2% compared with the average accuracy of previous work on multi-class classification, while a very high precision value was observed, which is of high scientific value.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3