Lung Cancer Prediction Using Robust Machine Learning and Image Enhancement Methods on Extracted Gray-Level Co-Occurrence Matrix Features

Author:

Hussain LalORCID,Alsolai Hadeel,Hassine Siwar Ben Haj,Nour Mohamed K.,Duhayyim Mesfer Al,Hilal Anwer Mustafa,Salama Ahmed S.,Motwakel Abdelwahed,Yaseen Ishfaq,Rizwanullah Mohammed

Abstract

In the present era, cancer is the leading cause of demise in both men and women worldwide, with low survival rates due to inefficient diagnostic techniques. Recently, researchers have been devising methods to improve prediction performance. In medical image processing, image enhancement can further improve prediction performance. This study aimed to improve lung cancer image quality by utilizing and employing various image enhancement methods, such as image adjustment, gamma correction, contrast stretching, thresholding, and histogram equalization methods. We extracted the gray-level co-occurrence matrix (GLCM) features on enhancement images, and applied and optimized vigorous machine learning classification algorithms, such as the decision tree (DT), naïve Bayes, support vector machine (SVM) with Gaussian, radial base function (RBF), and polynomial. Without the image enhancement method, the highest performance was obtained using SVM, polynomial, and RBF, with accuracy of (99.89%). The image enhancement methods, such as image adjustment, contrast stretching at threshold (0.02, 0.98), and gamma correction at gamma value of 0.9, improved the prediction performance of our analysis on 945 images provided by the Lung Cancer Alliance MRI dataset, which yielded 100% accuracy and 1.00 of AUC using SVM, RBF, and polynomial kernels. The results revealed that the proposed methodology can be very helpful to improve the lung cancer prediction for further diagnosis and prognosis by expert radiologists to decrease the mortality rate.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3