Rational Sampling Numbers of Soil pH for Spatial Variation: A Case Study from Yellow River Delta in China

Author:

Zhang Yingxin,Duan Mengqi,Li Shimei,Zhang Xiaoguang,Song Xiangyun,Cui Dejie

Abstract

Spatial variation of soil pH is important for the evaluation of environmental quality. A reasonable number of sampling points has an important meaning for accurate quantitative expression on spatial distribution of soil pH and resource savings. Based on the grid distribution point method, 908, 797, 700, 594, 499, 398, 299, 200, 149, 100, 75 and 50 sampling points, which were randomly selected from 908 sampling points, constituted 12 sample sets. Semi-variance structure analysis was carried out for different point sets, and ordinary Kriging was used for spatial prediction and accuracy verification, and the influence of different sampling points on spatial variation of soil pH was discussed. The results show that the pH value in Kenli County (China) was generally between 7.8 and 8.1, and the soil was alkaline. Semi-variance models fitted by different point sets could reflect the spatial structure characteristics of soil pH with accuracy. With a decrease in the number of sampling points, the Sill value of sample set increased, and the spatial autocorrelation gradually weakened. Considering the prediction accuracy, spatial distribution and investigation cost, a number of sampling points greater than or equal to 150 could satisfy the spatial variation expression of soil pH at the county level in the Yellow River Delta. This is equivalent to taking at least 107 sampling points per 1000 km2. The results in this study are applicable to areas with similar environmental and soil conditions as the Yellow River Delta, and have reference significance for these areas.

Funder

the Agricultural Science and Technology Innovation Fund of Shandong Province, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3