Comparative Evaluation of Bond Strength and Microleakage of Three Ion-Releasing Restorative Materials at Various pH Levels

Author:

Kim Hyun-JungORCID

Abstract

The aim of this study was a comparison of the micro-tensile bond strength (μTBS) to dentin and microleakage of in vitro class V restorations of three different ion-releasing restorative materials under various pH conditions: giomer, a resin-modified glass ionomer (RMGI), and a new alkasite material. A μTBS test was performed using a universal testing machine, immediately and after storage at different pH (4, 7, and 10) buffer solutions (n = 15) over 24 h, and the failure mode was analyzed. For microleakage analysis, class V restorations were performed on extracted premolars, which were sectioned and stored in pH 4-, 7-, and 10-buffered fluorescent 0.02% rhodamine B dye. The specimens were observed under a confocal laser scanning microscope (CLSM) and scored using the acquired images. There were no significant differences in the μTBS according to the type of material (p = 0.518). The giomer showed a decreased bond strength under the pH 4 condition compared with the immediately tested or pH 7-stored specimens (p ≤ 0.043). In the microleakage analysis, the class V restoration with giomer showed a higher microleakage than RMGI or alkasite (p = 0.001). For RMGI and alkasite, the specimens stored at pH 4 showed a significantly lower microleakage than those stored at pH 7 (p = 0.028). RMGI and alkasite can be adopted as restorative materials in generalized or localized low-pH conditions.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives

2. Restoration of teeth with more-viscous glass ionomer cements following radiation-induced caries

3. Next generational fuji IX-a proposed universal dental material–but not yet 'set in cement'

4. A study of glass-ionomer cement and its interface with enamel and dentin using a low-temperature, high-resolution scanning electron microscopic technique;Ngo;J. Esthet. Resto. Dent.,1999

5. Resin-modified glass ionomer materials. A status report for the American Journal of Dentistry;Sidhu;Am. J. Dent.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3