Abstract
When applying the sequential quadratic programming (SQP) algorithm to topology optimization, using the quasi-Newton methods or calculating the Hessian matrix directly will result in a considerable amount of calculation, making it computationally infeasible when the number of optimization variables is large. To solve the above problems, this paper creatively proposes a method for calculating the approximate Hessian matrix for structural topology optimization with minimum compliance problems. Then, the second-order Taylor expansion transforms the original problem into a series of separable and easy-to-solve convex quadratic programming (QP) subproblems. Finally, the quadratic programming optimality criteria (QPOC) method and the QP solver of MATLAB are used to solve the subproblems. Compared with other sequential quadratic programming methods, the advantage of the proposed method is that the Hessian matrix is diagonally positive definite and its calculation is simple. Numerical experiments on an MBB beam and cantilever beam verify the feasibility and efficiency of the proposed method.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献