Hyperparameter Tuning with High Performance Computing Machine Learning for Imbalanced Alzheimer’s Disease Data

Author:

Zhang FanORCID,Petersen Melissa,Johnson Leigh,Hall James,O’Bryant Sid E.

Abstract

Accurate detection is still a challenge in machine learning (ML) for Alzheimer’s disease (AD). Class imbalance in imbalanced AD data is another big challenge for machine-learning algorithms working under the assumption that the data are evenly distributed within classes. Here, we present a hyperparameter tuning workflow with high-performance computing (HPC) for imbalanced data related to prevalent mild cognitive impairment (MCI) and AD in the Health and Aging Brain Study-Health Disparities (HABS-HD) project. We applied a single-node multicore parallel mode to hyperparameter tuning of gamma, cost, and class weight using a support vector machine (SVM) model with 10 times repeated fivefold cross-validation. We executed the hyperparameter tuning workflow with R’s bigmemory, foreach, and doParallel packages on Texas Advanced Computing Center (TACC)’s Lonestar6 system. The computational time was dramatically reduced by up to 98.2% for the high-performance SVM hyperparameter tuning model, and the performance of cross-validation was also improved (the positive predictive value and the negative predictive value at base rate 12% were, respectively, 16.42% and 92.72%). Our results show that a single-node multicore parallel structure and high-performance SVM hyperparameter tuning model can deliver efficient and fast computation and achieve outstanding agility, simplicity, and productivity for imbalanced data in AD applications.

Funder

NIH

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3