Spectroscopy of Alkali Atoms in Solid Matrices of Rare Gases: Experimental Results and Theoretical Analysis

Author:

Braggio CaterinaORCID,Calabrese RobertoORCID,Carugno GiovanniORCID,Fiscelli GiuseppeORCID,Guarise MarcoORCID,Khanbekyan AlenORCID,Noto AntonioORCID,Passante RobertoORCID,Rizzuto LuciaORCID,Ruoso GiuseppeORCID,Tomassetti LucaORCID

Abstract

We present an experimental and theoretical investigation of the spectroscopy of dilute alkali atoms in a solid matrix of inert gases at cryogenic temperatures, specifically Rubidium atoms in a solid Argon or Neon matrix, and related aspects of the interaction energies between the alkali atoms and the atoms of the solid matrix. The system considered is relevant for matrix isolation spectroscopy, and it is at the basis of a recently proposed detector of cosmological axions, exploiting magnetic-type transitions between Zeeman sublevels of alkali atoms in a magnetic field, tuned to the axion mass, assumed in the meV range. Axions are one of the supposed constituents of the dark matter (DM) of the Universe. This kind of spectroscopy could be also relevant for the experimental search of new physics beyond the Standard Model, in particular the search of violations of time-reversal or parity-charge-conjugation (CP) symmetry. In order to efficiently resolve the axion-induced transition in alkali-doped solid matrices, it is necessary to reduce as much as possible the spectral linewidth of the electronic transitions involved. The theoretical investigation presented in this paper aims to estimate the order of magnitude of the inhomogeneous contribution to the linewidth due to the alkali–matrix interactions (Coulomb/exchange and dispersion), and to compare the theoretical results with our experimental measurements of spectra of dilute Rubidium atoms in Argon and Neon solid matrix. The comparison of the expected or measured spectral linewidths will be important for selecting the most appropriate combination of alkali atoms and matrix inert elements to be used in the proposed axion detection scheme. It is finally suggested that dilute Lithium atoms diffused in a cold parahydrogen solid matrix could be, overall, a good system upon which the proposed detector could be based.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3