Depth Estimation for Egocentric Rehabilitation Monitoring Using Deep Learning Algorithms

Author:

Izadmehr Yasaman,Satizábal Héctor F.,Aminian KamiarORCID,Perez-Uribe Andres

Abstract

Upper limb impairment is one of the most common problems for people with neurological disabilities, affecting their activity, quality of life (QOL), and independence. Objective assessment of upper limb performance is a promising way to help patients with neurological upper limb disorders. By using wearable sensors, such as an egocentric camera, it is possible to monitor and objectively assess patients’ actual performance in activities of daily life (ADLs). We analyzed the possibility of using Deep Learning models for depth estimation based on a single RGB image to allow the monitoring of patients with 2D (RGB) cameras. We conducted experiments placing objects at different distances from the camera and varying the lighting conditions to evaluate the performance of the depth estimation provided by two deep learning models (MiDaS & Alhashim). Finally, we integrated the best performing model for depth-estimation (MiDaS) with other Deep Learning models for hand (MediaPipe) and object detection (YOLO) and evaluated the system in a task of hand-object interaction. Our tests showed that our final system has a 78% performance in detecting interactions, while the reference performance using a 3D (depth) camera is 84%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aplicação de Modelos de Aprendizado Profundo na Estimativa de Relações Espaciais dos Objetos para Auxiliar Pessoas com Deficiência Visual;Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2024);2024-06-25

2. Indoor Localization System Using Smartphone Cameras and Sensors;2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI);2024-01-25

3. Enhancing Hand and Object Detection for Monitoring Patients with Upper-Limb Impairment: A Study on the Impact of Input Size in Foundation Models;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3