A Surrogate Model Based Multi-Objective Optimization Method for Optical Imaging System

Author:

Sheng Lei,Zhao Weichao,Zhou Ying,Lin Weimeng,Du Chunyan,Lou Hongwei

Abstract

An optimization model for the optical imaging system was established in this paper. It combined the modern design of experiments (DOE) method known as Latin hypercube sampling (LHS), Kriging surrogate model training, and the multi-objective optimization algorithm NSGA-III into the optimization of a triplet optical system. Compared with the methods that rely mainly on optical system simulation, this surrogate model-based multi-objective optimization method can achieve a high-accuracy result with significantly improved optimization efficiency. Using this model, case studies were carried out for two-objective optimizations of a Cooke triplet optical system. The results showed that the weighted geometric spot diagram and the maximum field curvature were reduced 5.32% and 11.59%, respectively, in the first case. In the second case, where the initial parameters were already optimized by Code-V, this model further reduced the weighted geometric spot diagram and the maximum field curvature by another 3.53% and 4.33%, respectively. The imaging quality in both cases was considerably improved compared with the initial design, indicating that the model is suitable for the optimal design of an optical system.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference146 articles.

1. Optimization Techniques in Lens Design;Jamieson,1971

2. Automatic Lens Optimization: Recent Improvements;Dilworth;SPIE,1986

3. [Dynamic Programming];Ernest,2003

4. Accelerating optics design optimizations with deep learning

5. Surrogate-based analysis and optimization

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3