Design and Implementation of Semi-Physical Platform for Label Based Frame Switching in Integrated Satellite Terrestrial Networks

Author:

Zhou WeiORCID,Jiang Xing,Luo Qingsong,Huang Shanguo,Guo Bingli,Sun XiangORCID,Li Shaobo,Tan Xiaochuan,Ma Mingyi,Fu Tianwen

Abstract

With the explosion of traffic demand in recent years, the integration of satellite optical networks and terrestrial networks (ISTN) creates a promising networking solution for future low-latency, high-rate, and high-capacity communications. Owing to the high cost of deploying and maintaining a satellite optical network, it is critical to carefully design and plan the network to ensure the performance of the network. Thus, a semi-physical simulation platform based on software-defined networks (SDNs) is developed to simulate a satellite optical network and evaluate the performance of the proposed label-based advanced orbiting system (AOS) frame switching method that adheres to the Consultative Committee for Space Data Systems’ recommended standard (CCSDS). The semi-physical simulation platform has two major innovations: (1) adapting and integrating network protocols between the CCSDS and open system interconnect (OSI) reference models, particularly at the data link layer, and (2) the foundation for an SDN-based satellite optical network. In the control plane, real-time VxWorks Simulators serve as controllers to establish and manage various network protocols and the link manager protocol (LMP). Here, network protocols include open shortest path first (OSPF) for routing managing and controlling messages, constraint shortest path first–traffic engineering (CSPF-TE), and constraint-label distribution protocol (CR-LDP) for routing data services. LMP is used to assign and reserve satellite optical link resources. The performance of the architecture and protocols is evaluated via a semi-physical simulation platform.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3