TD-DNN: A Time Decay-Based Deep Neural Network for Recommendation System

Author:

Jain GouravORCID,Mahara Tripti,Sharma Subhash Chander,Agarwal SaurabhORCID,Kim HyunsungORCID

Abstract

In recent years, commercial platforms have embraced recommendation algorithms to provide customers with personalized recommendations. Collaborative Filtering is the most widely used technique of recommendation systems, whose accuracy is primarily reliant on the computed similarity by a similarity measure. Data sparsity is one problem that affects the performance of the similarity measures. In addition, most recommendation algorithms do not remove noisy data from datasets while recommending the items, reducing the accuracy of the recommendation. Furthermore, existing recommendation algorithms only consider historical ratings when recommending the items to users, but users’ tastes may change over time. To address these issues, this research presents a Deep Neural Network based on Time Decay (TD-DNN). In the data preprocessing phase of the model, noisy ratings are detected from the dataset and corrected using the Matrix Factorization approach. A power decay function is applied to the preprocessed input to provide more weightage to the recent ratings. This non-noisy weighted matrix is fed into the Deep Learning model, consisting of an input layer, a Multi-Layer Perceptron, and an output layer to generate predicted ratings. The model’s performance is tested on three benchmark datasets, and experimental results confirm that TD-DNN outperforms other existing approaches.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3