Abstract
One of the foundational and key means of optimizing network service in the field of network security is traffic identification. Various data transmission encryption technologies have been widely employed in recent years. Wrongdoers usually bypass the defense of network security facilities through VPN to carry out network intrusion and malicious attacks. The existing encrypted traffic identification system faces a severe problem as a result of this phenomenon. Previous encrypted traffic identification methods suffer from feature redundancy, data class imbalance, and low identification rate. To address these three problems, this paper proposes a VPN-encrypted traffic identification method based on ensemble learning. Firstly, aiming at the problem of feature redundancy in VPN-encrypted traffic features, a method of selecting encrypted traffic features based on mRMR is proposed; secondly, aiming at the problem of data class imbalance, improving the Xgboost identification model by using the focal loss function for the data class imbalance problem; Finally, in order to improve the identification rate of VPN-encrypted traffic identification methods, an ensemble learning model parameter optimization method based on optimal Bayesian is proposed. Experiments revealed that our proposed VPN-encrypted traffic identification method produced more desirable VPN-encrypted traffic identification outcomes. Meanwhile, using two encrypted traffic datasets, eight common identification algorithms are compared, and the method appears to be more accurate in identifying encrypted traffic.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献