Abstract
Mutational signatures indicate the mutational processes and substitution patterns in cancer cell genomes. However, the functional consequences of mutational signatures remain unclear, and there have been no comprehensive systematic studies to examine the relationships between the mutational signatures and the immune cell infiltration. Here, the relationship between mutational signatures and immune cell infiltration using non-negative canonical correlation analysis based on 8927 patients across 25 tumor types was investigated. By inspecting mutational signatures with the maximal coefficients determined by the non-negative canonical correlation analysis, the study identified mutational signatures related to immune cell infiltration composed of tumor microenvironments. The analysis was validated by showing that the genes associated with the identified mutational signatures were linked to overall survival by a Kaplan–Meier curve and a log-rank test and were mainly related to immunity by gene set enrichment analysis. These results will help expand our knowledge of tumor biology and recognize the functional roles and associations of immune systems with mutational signatures.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science