APT-Attack Detection Based on Multi-Stage Autoencoders

Author:

Neuschmied HelmutORCID,Winter MartinORCID,Stojanović BrankaORCID,Hofer-Schmitz KatharinaORCID,Božić JosipORCID,Kleb Ulrike

Abstract

In the face of emerging technological achievements, cyber security remains a significant issue. Despite the new possibilities that arise with such development, these do not come without a drawback. Attackers make use of the new possibilities to take advantage of possible security defects in new systems. Advanced-persistent-threat (APT) attacks represent sophisticated attacks that are executed in multiple steps. In particular, network systems represent a common target for APT attacks where known or yet undiscovered vulnerabilities are exploited. For this reason, intrusion detection systems (IDS) are applied to identify malicious behavioural patterns in existing network datasets. In recent times, machine-learning (ML) algorithms are used to distinguish between benign and anomalous activity in such datasets. The application of such methods, especially autoencoders, has received attention for achieving good detection results for APT attacks. This paper builds on this fact and applies several autoencoder-based methods for the detection of such attack patterns in two datasets created by combining two publicly available benchmark datasets. In addition to that, statistical analysis is used to determine features to supplement the anomaly detection process. An anomaly detector is implemented and evaluated on a combination of both datasets, including two experiment instances–APT-attack detection in an independent test dataset and in a zero-day-attack test dataset. The conducted experiments provide promising results on the plausibility of features and the performance of applied algorithms. Finally, a discussion is provided with suggestions of improvements in the anomaly detector.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. A Survey on Advanced Persistent Threats: Techniques, Solutions, Challenges, and Research Opportunities

2. High-Performance Unsupervised Anomaly Detection for Cyber-Physical System Networks;Schneider;Proceedings of the CPS-SPC@CCS,2018

3. Outlier detection with autoencoder ensembles;Chen;Proceedings of the 2017 SIAM International Conference on Data Mining,2017

4. An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos;Ravi Kiran;arXiv,2018

5. A survey of deep learning-based network anomaly detection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3