Mixed-Flow Load-Balanced Scheduling for Software-Defined Networks in Intelligent Video Surveillance Cloud Data Center

Author:

Song BiaoORCID,Chang Yue,Zhang Xinchang,Al-Dhelaan Abdullah,Al-Dhelaan Mohammed

Abstract

As the large amount of video surveillance data floods into cloud data center, achieving load balancing in a cloud network has become a challenging problem. Meanwhile, we hope the cloud data center maintains low latency, low consumption, and high throughput performance when transmitting massive amounts of data. OpenFlow enables a software-defined solution through programing to control the scheduling of data flow in the cloud data center. However, the existing scheduling algorithm of the data center cannot cope with the congestion of the network center effectively. Even for some dynamic scheduling algorithms, adjustments can only be made after congestion occurs. Hence, we propose a proactive and dynamically adjusted mixed-flow load-balanced scheduling (MFLBS) algorithm, which not only takes into account the different sizes of flows in the network but also maintains maximum throughput while balancing the load. In this paper, the MFLBS problem was formulated, along with a set of heuristic algorithms for real-time feedback and adjustment. Experiments with mesh and tree network models show that our MFLBS is significantly better than other dynamic scheduling algorithms, including one-hop DLBS and static scheduling algorithm FCFS. The MFLBS algorithm can effectively reduce the delay of small flows and average delay while maintaining high throughput.

Funder

National Natural Science Foundation of China

the Deanship of Scientific Research at King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ANN-Based Scalable Video Encoding Method for Crime Surveillance-Intelligence of Things Applications;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

2. Research on Secure Interactive System of Video Surveillance Data;2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT);2023-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3