Abstract
As the large amount of video surveillance data floods into cloud data center, achieving load balancing in a cloud network has become a challenging problem. Meanwhile, we hope the cloud data center maintains low latency, low consumption, and high throughput performance when transmitting massive amounts of data. OpenFlow enables a software-defined solution through programing to control the scheduling of data flow in the cloud data center. However, the existing scheduling algorithm of the data center cannot cope with the congestion of the network center effectively. Even for some dynamic scheduling algorithms, adjustments can only be made after congestion occurs. Hence, we propose a proactive and dynamically adjusted mixed-flow load-balanced scheduling (MFLBS) algorithm, which not only takes into account the different sizes of flows in the network but also maintains maximum throughput while balancing the load. In this paper, the MFLBS problem was formulated, along with a set of heuristic algorithms for real-time feedback and adjustment. Experiments with mesh and tree network models show that our MFLBS is significantly better than other dynamic scheduling algorithms, including one-hop DLBS and static scheduling algorithm FCFS. The MFLBS algorithm can effectively reduce the delay of small flows and average delay while maintaining high throughput.
Funder
National Natural Science Foundation of China
the Deanship of Scientific Research at King Saud University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ANN-Based Scalable Video Encoding Method for Crime Surveillance-Intelligence of Things Applications;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28
2. Research on Secure Interactive System of Video Surveillance Data;2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT);2023-04-08