Abstract
This paper presents a high-precision transfer system of time and RF frequency via the fiber optic link based on secure encryption. On the basis of the two-way time transfer of optical fiber, a security strategy composed of an SM2 encryption algorithm is introduced, which can resist the security risk of time information being tampered with. The experimental results show that the developed picosecond-precision fiber-optic time transfer equipment can ensure high stability while realizing the encryption function. Time synchronization stability in terms of time deviation (TDEV) of 1 PPS can reach around 10.7 ps at 1 s and 7.1 ps at 10 s averaging time. The stability of the 10 MHz frequency can reach around 4.7 × 10−12 at 1 s and 1.1 × 10−12 at 10 s averaging time. There is no significant difference in time transfer accuracy, compared with unencrypted conditions. Furthermore, this paper realizes a ring time transfer network via a 150 km fiber-optic link with three nodes using three devices. The TDEV of 1PPS can reach around 20.8 ps at 1s averaging time. This paper provides a reference to establish a high-precision, safe, and stable time synchronization fiber network in the future.
Funder
the National Natural Science Foundation of China
the key Research and Development plan of Guangdong Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献