Facial Expressions Based Automatic Pain Assessment System

Author:

Alghamdi Thoria,Alaghband Gita

Abstract

Pain assessment is used to improve patients’ treatment outcomes. Human observers may be influenced by personal factors, such as inexperience and medical organizations are facing a shortage of experts. In this study, we developed a facial expressions-based automatic pain assessment system (FEAPAS) to notify medical staff when a patient suffers pain by activating an alarm and recording the incident and pain level with the date and time. The model consists of two identical concurrent subsystems, each of which takes one of the two inputs of the model, i.e., “full face” and “the upper half of the same face”. The subsystems extract the relevant input features via two pre-trained convolutional neural networks (CNNs), using either VGG16, InceptionV3, ResNet50, or ResNeXt50, while freezing all convolutional blocks and replacing the classifier layer with a shallow CNN. The concatenated outputs in this stage is then sent to the model’s classifier. This approach mimics the human observer method and gives more importance to the upper part of the face, which is similar to the Prkachin and Soloman pain intensity (PSPI). Additionally, we further optimized our models by applying four optimizers (SGD/ADAM/RMSprop/RAdam) to each model and testing them on the UNBC-McMaster shoulder pain expression archive dataset to find the optimal combination, InceptionV3-SGD. The optimal model showed an accuracy of 99.10% on 10-fold cross-validation, thus outperforming the state-of-the-art model on the UNBC-McMaster database. It also scored 90.56% on unseen subject data. To speed up the system response time and reduce unnecessary alarms associated with temporary facial expressions, a select but effective subset of frames was inspected and classified. Two frame-selection criteria were reported. Classifying only two frames at the middle of 30-frame sequence was optimal, with an average reaction time of at most 6.49 s and the ability to avoid unnecessary alarms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3