Optimization Algorithms for Scalable Stream Batch Clustering with k Estimation

Author:

Cândido Paulo Gustavo LopesORCID,Silva Jonathan AndradeORCID,Faria Elaine RibeiroORCID,Naldi Murilo CoelhoORCID

Abstract

The increasing volume and velocity of the continuously generated data (data stream) challenge machine learning algorithms, which must evolve to fit real-world problems. The data stream clustering algorithms face issues such as the rapidly increasing volume of the data, the variety of the number of clusters, and their shapes. The present work aims to improve the accuracy of sequential clustering batches of data streams for scenarios in which clusters evolve dynamically and continuously, automatically estimating their number. In order to achieve this goal, three evolutionary algorithms are presented, along with three novel algorithms designed to deal with clusters of normal distribution based on goodness-of-fit tests in the context of scalable batch stream clustering with automatic estimation of the number of clusters. All of them are developed on top of MapReduce, Discretized-Stream models, and the most recent MPC frameworks to provide scalability, reliability, resilience, and flexibility. The proposed algorithms are experimentally compared with state-of-the-art methods and present the best results for accuracy for normally distributed data sets, reaching their goal.

Funder

São Paulo Research Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Knowledge Discovery from Data Streams;Gama,2010

2. Machine learning for streaming data

3. Data stream clustering

4. Clustering in the Presence of Concept Drift;Moulton;Proceedings of the Machine Learning and Knowledge Discovery in Databases

5. Comparison Among Methods for k Estimation in k-means;Naldi;Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Online Stream Clustering Based on Fast Peeling of Boundary Micro-Cluster;IEEE Transactions on Neural Networks and Learning Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3