Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks

Author:

Janczyk Kamil,Rumiński JacekORCID,Neumann TomaszORCID,Głowacka NataliaORCID,Wiśniewski PiotrORCID

Abstract

Age prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this study, we used low-resolution, dual-energy, full-body X-ray absorptiometry images to train deep learning models to predict age. In particular, we proposed a preprocessing framework and adapted many partially pretrained convolutional neural network (CNN) models to predict the age of children and young adults. We used a new dataset of 910 multispectral images that were weakly annotated by specialists. The experimental results showed that the proposed preprocessing techniques and the adapted approach to the CNN model achieved a discrepancy between chronological age and predicted age of around 15.56 months for low-resolution whole-body X-rays. Furthermore, we found that the main factor that influenced age prediction scores was spatial features, not multispectral features.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3