Performance of Graph and Relational Databases in Complex Queries

Author:

Kotiranta Petri,Junkkari Marko,Nummenmaa Jyrki

Abstract

In developing NoSQL databases, a major motivation is to achieve better efficient query performance compared with relational databases. The graph database is a NoSQL paradigm where navigation is based on links instead of joining tables. Links can be implemented as pointers, and following a pointer is a constant time operation, whereas joining tables is more complicated and slower, even in the presence of foreign keys. Therefore, link-based navigation has been seen as a more efficient query approach than using join operations on tables. Existing studies strongly support this assumption. However, query complexity has received less attention. For example, in enterprise information systems, queries are usually complex so data need to be collected from several tables or by traversing paths of graph nodes of different types. In the present study, we compared the query performance of a graph-based database system (Neo4j) and relational database systems (MySQL and MariaDB). The effect of different efficiency issues (e.g., indexing and optimization) were included in the comparison in order to investigate the most efficient solutions for different query types. The outcome is that although Neo4j is more efficient for simple queries, MariaDB is essentially more efficient when the complexity of queries increases. The study also highlighted how dramatically the efficiency of relational database has grown during the last decade.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3