Opposing Effects of Ceanothus velutinus Phytochemistry on Herbivore Communities at Multiple Scales

Author:

Philbin Casey S.ORCID,Paulsen Matthew,Richards Lora A.

Abstract

Identifying the interactions of functional, biotic, and abiotic factors that define plant–insect communities has long been a goal of community ecologists. Metabolomics approaches facilitate a broader understanding of how phytochemistry mediates the functional interactions among ecological factors. Ceanothus velutinus communities are a relatively unstudied system for investigating chemically mediated interactions. Ceanothus are nitrogen-fixing, fire-adapted plants that establish early post-fire, and produce antimicrobial cyclic peptides, linear peptides, and flavonoids. This study takes a metabolomic approach to understanding how the diversity and variation of C. velutinus phytochemistry influences associated herbivore and parasitoid communities at multiple spatiotemporal scales. Herbivores and foliar samples were collected over three collection times at two sites on the east slope of the Sierra Nevada Mountain range. Foliar tissue was subjected to LC-MS metabolomic analysis, and several novel statistical analyses were applied to summarize, quantify, and annotate variation in the C. velutinus metabolome. We found that phytochemistry played an important role in plant–insect community structure across an elevational gradient. Flavonoids were found to mediate biotic and abiotic influences on herbivores and associated parasitoids, while foliar oligopeptides played a significant positive role in herbivore abundance, even more than abundance of host plants and leaf abundance. The importance of nutritional and defense chemistry in mediating ecological interactions in C. velutinus plant–herbivore communities was established, justifying larger scale studies of this plant system that incorporate other mediators of phytochemistry such as genetic and metageomic contributions.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3