Metabolic Fluctuations in the Human Stool Obtained from Blastocystis Carriers and Non-Carriers

Author:

Betts Emma L.,Newton Jamie M.,Thompson Gary S.ORCID,Sarzhanov FakhriddinORCID,Jinatham Vasana,Kim Moon-JuORCID,Popluechai SiamORCID,Dogruman-Al Funda,Won Eun-Jeong,Gentekaki Eleni,Tsaousis Anastasios D.ORCID

Abstract

Blastocystis is an obligate anaerobic microbial eukaryote that frequently inhabits the gastrointestinal tract. Despite this prevalence, very little is known about the extent of its genetic diversity, pathogenicity, and interaction with the rest of the microbiome and its host. Although the organism is morphologically static, it has no less than 28 genetically distinct subtypes (STs). Reports on the pathogenicity of Blastocystis are conflicting. The association between Blastocystis and intestinal bacterial communities is being increasingly explored. Nonetheless, similar investigations extending to the metabolome are non-existent.Using established NMR metabolomics protocols in 149 faecal samples from individuals from South Korea (n = 38), Thailand (n = 44) and Turkey (n = 69), we have provided a snapshot of the core metabolic compounds present in human stools with (B+) and without (B−) Blastocystis. Samples included hosts with gastrointestinal symptoms and asymptomatics. A total of nine, 62 and 98 significant metabolites were associated with Blastocystis carriage in the South Korean, Thai and Turkish sample sets respectively, with a number of metabolites increased in colonised groups. The metabolic profiles of B+ and B− samples from all countries were distinct and grouped separately in the partial least squares-discriminant analysis (PLS-DA). Typical inflammation-related metabolites negatively associated with Blastocystis positive samples. This data will assist in directing future studies underlying the involvement of Blastocystis in physiological processes of both the gut microbiome and the host. Future studies using metabolome and microbiome data along with host physiology and immune responses information will contribute significantly towards elucidating the role of Blastocystis in health and disease.

Funder

Biotechnology and Biological Sciences Research Council

Wellcome Trust

Thailand Research Fund

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3