Abstract
The hypothesis tested was that tropical steers supplemented with the Desmanthus legume and lucerne, a widely characterized temperate legume of high nutritive value, would elicit similar responses in plasma metabolite profiles, productive performance, nitrogen retention, and volatile fatty acids (VFA). The tannin-binding compound, polyethylene glycol-4000 (PEG), was added to the diets (160 g/kg Desmanthus dry matter) with the objective of further exploring nitrogen (N) utilization in the animals supplemented with Desmanthus relative to lucerne. From February to June 2020, sixteen yearling Brangus steers (average liveweight of 232 ± 6 kg) were fed a background diet of Rhodes grass (Chloris gayana) hay for 28 days, before introducing three Desmanthus cultivars (Desmanthus virgatus cv. JCU2, D. bicornutus cv. JCU4, D. leptophyllus cv. JCU7) and lucerne (Medicago sativa) at 30% dry matter intake (DMI). Relative to the backgrounding period, all supplemented steers exhibited similar growth performance. Steers supplemented with Desmanthus recorded a lower DMI and animal growth performance, but higher fecal N concentration than animals supplemented with lucerne. Among the three Desmanthus cultivars, there were no significant differences in N concentrations, VFA, and plasma metabolite profiles. The addition of PEG induced higher rumen iso-acid concentrations and fecal N excretion. However, feeding Desmanthus spp. to tropical Bos indicus steers could be a valuable means of increasing N utilization, which is attributable to the presence of tannins, and, consequently, improve animal productive performance. Since supplementation with lucerne resulted in higher liveweight, daily liveweight gains, and overall animal performance than supplementing with Desmanthus, the tested hypothesis that both supplements will elicit similar animal performance does not hold and must be rejected. Further in vivo investigation is needed to better understand the impact of tannins in Desmanthus on N utilization.
Funder
Cooperative Research Centre Projects
Meat and Livestock Australia
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献