Author:
Sim Soyoon,Choi Youngwoo,Park Hae-Sim
Abstract
Asthma is the most common chronic airway inflammation, with multiple phenotypes caused by complicated interactions of genetic, epigenetic, and environmental factors. To date, various determinants have been suggested for asthma pathogenesis by a new technology termed omics, including genomics, transcriptomics, proteomics, and metabolomics. In particular, the systematic analysis of all metabolites in a biological system, such as carbohydrates, amino acids, and lipids, has helped identify a novel pathway related to complex diseases. These metabolites are involved in the regulation of hypermethylation, response to hypoxia, and immune reactions in the pathogenesis of asthma. Among them, lipid metabolism has been suggested to be related to lung dysfunction in mild-to-moderate asthma. Sphingolipid metabolites are an important mediator contributing to airway inflammation in obese asthma and aspirin-exacerbated respiratory disease. Although how these molecular variants impact the disease has not been completely determined, identification of new causative factors may possibly lead to more-personalized and precise pathway-specific approaches for better diagnosis and treatment of asthma. In this review, perspectives of metabolites related to asthma and clinical implications have been highlighted according to various phenotypes.
Funder
Ministry of Health and Welfare, Republic of Korea
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献