An Extensive Metabolomics Workflow to Discover Cardiotoxin-Induced Molecular Perturbations in Microtissues

Author:

Bowen Tara J.ORCID,Hall Andrew R.,Lloyd Gavin R.ORCID,Weber Ralf J. M.ORCID,Wilson Amanda,Pointon Amy,Viant Mark R.ORCID

Abstract

Discovering modes of action and predictive biomarkers of drug-induced structural cardiotoxicity offers the potential to improve cardiac safety assessment of lead compounds and enhance preclinical to clinical translation during drug development. Cardiac microtissues are a promising, physiologically relevant, in vitro model, each composed of ca. 500 cells. While untargeted metabolomics is capable of generating hypotheses on toxicological modes of action and discovering metabolic biomarkers, applying this technology to low-biomass microtissues in suspension is experimentally challenging. Thus, we first evaluated a filtration-based approach for harvesting microtissues and assessed the sensitivity and reproducibility of nanoelectrospray direct infusion mass spectrometry (nESI-DIMS) measurements of intracellular extracts, revealing samples consisting of 28 pooled microtissues, harvested by filtration, are suitable for profiling the intracellular metabolome and lipidome. Subsequently, an extensive workflow combining nESI-DIMS untargeted metabolomics and lipidomics of intracellular extracts with ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) analysis of spent culture medium, to profile the metabolic footprint and quantify drug exposure concentrations, was implemented. Using the synthetic drug and model cardiotoxin sunitinib, time-resolved metabolic and lipid perturbations in cardiac microtissues were investigated, providing valuable data for generating hypotheses on toxicological modes of action and identifying putative biomarkers such as disruption of purine metabolism and perturbation of polyunsaturated fatty acid levels.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3