Abstract
The present study explored patterns of circulating metabolites and proteins that can predict future risk for ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI). We conducted a prospective nested case-control study in northern Sweden in individuals who developed STEMI (N = 50) and NSTEMI (N = 50) within 5 years and individually matched controls (N = 100). Fasted plasma samples were subjected to multiplatform mass spectrometry-based metabolomics and multiplex protein analyses. Multivariate analyses were used to elucidate infarction-specific metabolite and protein risk profiles associated with future incident STEMI and NSTEMI. We found that altered lysophosphatidylcholine (LPC) to lysophosphatidylethanolamine (LPE) ratio predicted STEMI and NSTEMI events in different ways. In STEMI, lysophospholipids (mainly LPEs) were lower, whereas in NSTEMI, lysophospholipids (mainly LPEs) were higher. We found a similar response for all detected lysophospholipids but significant alterations only for those containing linoleic acid (C18:2, p < 0.05). Patients with STEMI had higher secretoglobin family 3A member 2 and tartrate-resistant acid phosphate type 5 and lower platelet-derived growth factor subunit A, which are proteins associated with atherosclerosis severity and plaque development mediated via altered phospholipid metabolism. In contrast, patients with NSTEMI had higher levels of proteins associated with inflammation and macrophage activation, including interleukin 6, C-reactive protein, chemerin, and cathepsin X and D. The STEMI risk marker profile includes factors closely related to the development of unstable plaque, including a higher LPC:LPE ratio, whereas NSTEMI is characterized by a lower LPC:LPE ratio and increased inflammation.
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献