Comparative Effects of Di-(2-ethylhexyl)phthalate and Di-(2-ethylhexyl)terephthalate Metabolites on Thyroid Receptors: In Vitro and In Silico Studies

Author:

Kambia Nicolas,Séverin Isabelle,Farce Amaury,Dahbi Laurence,Dine Thierry,Moreau EmmanuelORCID,Sautou ValérieORCID,Chagnon Marie-Christine

Abstract

Plasticizers added to polyvinylchloride (PVC) used in medical devices can be released into patients’ biological fluids. Di-(2-ethylhexyl)phthalate (DEHP), a well-known reprotoxic and endocrine disruptor, must be replaced by alternative compounds. Di-(2-ethylhexyl) terephthalate (DEHT) is an interesting candidate due to its lower migration from PVC and its lack of reprotoxicity. However, there is still a lack of data to support the safety of its human metabolites with regard to their hormonal properties in the thyroid system. The effects of DEHT metabolites on thyroid/hormone receptors (TRs) were compared in vitro and in silico to those of DEHP. The oxidized metabolites of DEHT had no effect on T3 receptors whereas 5-hydroxy-mono-(ethylhexyl)phthalate (5-OH-MEHP) appeared to be primarily an agonist for TRs above 0.2 µg/mL with a synergistic effect on T3. Monoesters (MEHP and mono-(2-ethylhexyl)terephthalate, MEHT) were also active on T3 receptors. In vitro, MEHP was a partial agonist between 10 and 20 µg/mL. MEHT was an antagonist at non-cytotoxic concentrations (2–5 µg/mL) in a concentration-dependent manner. The results obtained with docking were consistent with those of the T-screen and provide additional information on the preferential affinity of monoesters and 5-OH-MEHP for TRs. This study highlights a lack of interactions between oxidized metabolites and TRs, confirming the interest of DEHT.

Funder

Agence Nationale de Sécurité du Médicament et des Produits de Santé

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference49 articles.

1. Scientific Committee on Emerging and Newly-Identified Health Risks. Opinion on the Safety of Medical Devices Containing DEHP-Plasticized PVC or Other Plasticizers on Neonates and Other Groups Possibly at Riskhttps://ec.europa/health/scientific_committees/emerging/docs/scenihr_o_047.pdf

2. Migrability of PVC plasticizers from medical devices into a simulant of infused solutions

3. Phthalates and critically ill neonates: device-related exposures and non-endocrine toxic risks

4. Sources d’exposition aux phtalates dans une unité de soins néonatals

5. Sources of clinically significant neonatal intensive care unit phthalate exposure

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3