Tailored Polymer-Based Selective Extraction of Lipid Mediators from Biological Samples

Author:

Ambaw Yohannes Abere,Dahl Sandra Rinne,Chen Yan,Greibrokk Tyge,Lundanes Elsa,Lazraq Issam,Shinde SudhirkumarORCID,Selvalatchmanan Jayashree,Wenk Markus R.,Sellergren Börje,Torta FedericoORCID

Abstract

Lipid mediators, small molecules involved in regulating inflammation and its resolution, are a class of lipids of wide interest as their levels in blood and tissues may be used to monitor health and disease states or the effect of new treatments. These molecules are present at low levels in biological samples, and an enrichment step is often needed for their detection. We describe a rapid and selective method that uses new low-cost molecularly imprinted (MIP) and non-imprinted (NIP) polymeric sorbents for the extraction of lipid mediators from plasma and tissue samples. The extraction process was carried out in solid-phase extraction (SPE) cartridges, manually packed with the sorbents. After extraction, lipid mediators were quantified by liquid chromatography–tandem mass spectrometry (LC–MSMS). Various parameters affecting the extraction efficiency were evaluated to achieve optimal recovery and to reduce non-specific interactions. Preliminary tests showed that MIPs, designed using the prostaglandin biosynthetic precursor arachidonic acid, could effectively enrich prostaglandins and structurally related molecules. However, for other lipid mediators, MIP and NIP displayed comparable recoveries. Under optimized conditions, the recoveries of synthetic standards ranged from 62% to 100%. This new extraction method was applied to the determination of the lipid mediators concentration in human plasma and mouse tissues and compared to other methods based on commercially available cartridges. In general, the methods showed comparable performances. In terms of structural specificity, our newly synthesized materials accomplished better retention of prostaglandins (PGs), hydroxydocosahexaenoic acid (HDoHE), HEPE, hydroxyeicosatetraenoic acids (HETE), hydroxyeicosatrienoic acid (HETrE), and polyunsaturated fatty acid (PUFA) compounds, while the commercially available Strata-X showed a higher recovery for dihydroxyeicosatetraenoic acid (diHETrEs). In summary, our results suggest that this new material can be successfully implemented for the extraction of lipid mediators from biological samples.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3