Binary Simplification as an Effective Tool in Metabolomics Data Analysis

Author:

Traquete FranciscoORCID,Luz JoãoORCID,Cordeiro Carlos,Sousa Silva MartaORCID,Ferreira António E. N.ORCID

Abstract

Metabolomics aims to perform a comprehensive identification and quantification of the small molecules present in a biological system. Due to metabolite diversity in concentration, structure, and chemical characteristics, the use of high-resolution methodologies, such as mass spectrometry (MS) or nuclear magnetic resonance (NMR), is required. In metabolomics data analysis, suitable data pre-processing, and pre-treatment procedures are fundamental, with subsequent steps aiming at highlighting the significant biological variation between samples over background noise. Traditional data analysis focuses primarily on the comparison of the features’ intensity values. However, intensity data are highly variable between experimental batches, instruments, and pre-processing methods or parameters. The aim of this work was to develop a new pre-treatment method for MS-based metabolomics data, in the context of sample profiling and discrimination, considering only the occurrence of spectral features, encoding feature presence as 1 and absence as 0. This “Binary Simplification” encoding (BinSim) was used to transform several benchmark datasets before the application of clustering and classification methods. The performance of these methods after the BinSim pre-treatment was consistently as good as and often better than after different combinations of traditional, intensity-based, pre-treatments. Binary Simplification is, therefore, a viable pre-treatment procedure that effectively simplifies metabolomics data-analysis pipelines.

Funder

European Union

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3