Author:
Chang Xuefei,Ning Duo,Mao Lijuan,Wang Beibei,Fang Qi,Yao Hongwei,Wang Fang,Ye Gongyin
Abstract
Metabolomics is beginning to be used for assessing unintended changes in genetically modified (GM) crops. To investigate whether Cry1C gene transformation would induce metabolic changes in rice plants, and whether the metabolic changes would pose potential risks when Cry1C rice plants are exposed to rice dwarf virus (RDV), the metabolic profiles of Cry1C rice T1C-19 and its non-Bt parental rice MH63 under RDV-free and RDV-infected status were analyzed using gas chromatography–mass spectrometry (GC-MS). Compared to MH63 rice, slice difference was detected in T1C-19 under RDV-free conditions (less than 3%), while much more metabolites showed significant response to RDV infection in T1C-19 (15.6%) and in MH63 (5.0%). Pathway analysis showed biosynthesis of lysine, valine, leucine, and isoleucine may be affected by RDV infection in T1C-19. No significant difference in the contents of free amino acids (AAs) was found between T1C-19 and MH63 rice, and the free AA contents of the two rice plants showed similar responses to RDV infection. Furthermore, no significant differences of the RDV infection rates between T1C-19 and MH63 were detected. Our results showed the Cry1C gene transformation did not affect the sensitivity of rice to RDV, indicating Cry1C rice would not aggravate the epidemic and dispersal of RDV.
Funder
National Special Transgenic Project from Chinese Ministry of Agriculture
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献