Author:
Ullah Asad,Zulfiqar Muhammad Hamza,Khan Muhammad Atif,Ali Muhammad,Zubair Muhammad,Mehmood Muhammad Qasim,Massoud Yehia
Abstract
The role of humidity sensors in different industries and field applications, such as agriculture, food monitoring, biomedical equipment, heating, and ventilation, is well known. However, most commercially available humidity sensors are based on polymers or electronic materials that are not degradable and thus contribute to electronic waste. Here, we report a low-cost, flexible, easy-to-fabricate, and eco-friendly parallel-plate capacitive humidity sensor for field applications. The sensor is fabricated from copper tape and tissue paper, where copper tape is used to create the plates of the capacitor, and tissue paper is used as a dielectric sensing layer. Along with the low cost, the high sensitivity, better response and recovery times, stability, and repeatability make this sensor unique. The sensor was tested for relative humidity (RH), ranging from 40% to 99%, and the capacitance varied linearly with RH from 240 pF to 720 pF, as measured by an Arduino. The response time of the sensor is ~1.5 s, and the recovery time is ~2.2 s. The experiment was performed 4–5 times on the same sensor, and repeatable results were achieved with an accuracy of ±0.1%. Furthermore, the sensor exhibits a stable response when tested at different temperatures. Due to the above advantages, the presented sensor can find ready applications in different areas.
Funder
King Abdullah University of Science and Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献