Radar Detection-Based Modeling in a Blast Furnace: A Prediction Model of Burden Surface Descent Speed

Author:

Tian JiuzhouORCID,Tanaka Akira,Hou Qingwen,Chen XianzhongORCID

Abstract

The distribution of burden layers is a vital factor that affects the production of a blast furnace. Radars are advanced instruments that can provide the detection results of the burden surface shape inside a blast furnace in real time. To better estimate the burden layer thicknesses through improving the prediction accuracy of the burden descent during charging periods, an innovative data-driven model for predicting the distribution of the burden surface descent speed is proposed. The data adopted were from the detection results of an operating blast furnace, collected using a mechanical swing radar system. Under a kinematic continuum modeling mechanism, the proposed model adopts a linear combination of Gaussian radial basis functions to approximate the equivalent field of burden descent speed along the burden surface radius. A proof of the existence and uniqueness of the prediction solution is given to guarantee that the predicted radial profile of the burden surface can always be calculated numerically. Compared with the plain data-driven descriptive model, the proposed model has the ability to better characterize the variability in the radial distribution of burden descent speed. In addition, the proposed model provides prediction results of higher accuracy for both the future surface shape and descent speed distribution.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

China Scholarship Council

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3