A Comparison of Forest Tree Crown Delineation from Unmanned Aerial Imagery Using Canopy Height Models vs. Spectral Lightness

Author:

Gu Jianyu,Grybas HeatherORCID,Congalton Russell G.ORCID

Abstract

Improvements in computer vision combined with current structure-from-motion photogrammetric methods (SfM) have provided users with the ability to generate very high resolution structural (3D) and spectral data of the forest from imagery collected by unmanned aerial systems (UAS). The products derived by this process are capable of assessing and measuring forest structure at the individual tree level for a significantly lower cost compared to traditional sources such as LiDAR, satellite, or aerial imagery. Locating and delineating individual tree crowns is a common use of remotely sensed data and can be accomplished using either UAS-based structural or spectral data. However, no study has extensively compared these products for this purpose, nor have they been compared under varying spatial resolution, tree crown sizes, or general forest stand type. This research compared the accuracy of individual tree crown segmentation using two UAS-based products, canopy height models (CHM) and spectral lightness information obtained from natural color orthomosaics, using maker-controlled watershed segmentation. The results show that single tree crowns segmented using the spectral lightness were more accurate compared to a CHM approach. The optimal spatial resolution for using lightness information and CHM were found to be 30 and 75 cm, respectively. In addition, the size of tree crowns being segmented also had an impact on the optimal resolution. The density of the forest type, whether predominately deciduous or coniferous, was not found to have an impact on the accuracy of the segmentation.

Publisher

MDPI AG

Subject

Forestry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3