Affiliation:
1. Department of Business Administration, Dong-A University, Busan 49236, Republic of Korea
Abstract
The previous literature has provided mixed findings regarding whether consumers appreciate or are opposed to algorithms. The primary goal of this paper is to address these inconsistencies by identifying the maximizing tendency as a critical moderating variable. In Study 1, it was found that maximizers, individuals who strive for the best possible outcomes, exhibit greater reactance toward algorithm-recommended choices than satisficers, those who are satisfied with a good-enough option. This increased reactance also resulted in decreased algorithm adoption intention. Study 2 replicated and extended the findings from Study 1 by identifying the moderating role of choice goals. Maximizers are more likely to experience reactance to algorithm-recommended options when the act of choosing itself is intrinsically motivating and meaningful (i.e., autotelic choices) compared to when the decision is merely a means to an end (i.e., instrumental choices). The results of this research contribute to a nuanced understanding of how consumers with different decision-making styles navigate the landscape of choice in the digital age. Furthermore, it offers practical insights for firms that utilize algorithmic recommendations in their businesses.
Funder
National Research Foundation of Korea
Subject
Behavioral Neuroscience,General Psychology,Genetics,Development,Ecology, Evolution, Behavior and Systematics
Reference38 articles.
1. Twilio Segment (2023). The State of Personalization Report 2023, Twilio Segment.
2. Mordor Intelligence Product (2023). Recommendation Engine Market Size & Share Analysis—Growth Trends & Forecasts (2023–2028), Mordor Intelligence Product.
3. Algorithm Appreciation: People Prefer Algorithmic to Human Judgment;Logg;Organ. Behav. Hum. Decis. Process.,2019
4. Algorithm Overdependence: How the Use of Algorithmic Recommendation Systems Can Increase Risks to Consumer Well-Being;Banker;J. Public Policy Mark.,2019
5. Do Patients Trust Computers?;Promberger;J. Behav. Decis. Mak.,2006